What I didn’t know about electric bikes

After a lot of research this weekend, I learned quite a bit more about electric bikes and how they work.  I particularly concentrated on how the motor in the rear hub operates and how it can provide power without any moving parts.  My first goal from this point will be to open the hub shell of an Ultra Motor brand hub motor in the rear wheel of a Stromer.  I’ll detail all of it in a well-covered post.

Most of the information I found was on just a couple websites which I somehow had not come across yet. Electric Bike is definitely well organized and provided the most information about a variety of hub motors and their corresponding controllers and diagnostic procedures.  Ypedal has an amazing and vast knowledge of the systems and has created tons of custom setups as well as details repair on several Youtube videos that is a complete procedure and well explained.

Most of the motors have a similar layout:  An outer shell to protect and encase the motor, then a ring of magnets that are positioned between the shell and coils of copper wire.  Other than a couple sensors and wires that exit through the center of the wheel near the axle, that’s about it.  Very simple and once familiar with the parts, moderately easy to work on.  I chose to first learn about the motor because it seems like this is the only component that I haven’t been able to service other than to simply install a replacement wheel.  To have the ability to fix the motors once the manufacturer’s warranty expires will be essential — especially as the number of electric bikes is increasing and they are becoming more common.

Back to the sensors and wires in the motor.  Usually there are three small square shaped sensors that are positioned between two of the outer magnets in line with each other.  These are called Hall sensors and they measure the electrical current coming out of the motor as the wheel spins.  A tapered side of the sensor body is always positioned outward and usually is set with a tiny amount of JB Weld or epoxy. Out of the top of each sensor are three uncovered wire leads that are soldered to colored wires carefully running to the center of the hub and exit from the wheel to the controller and potentially a torque sensor.  A torque sensor is generally on higher end electric bikes while cheaper versions simply use a cadence magnet to calculate the input of added power.  The torque sensor is nicer because it adds power based on a direct measurement of the deflection of the wheel backward against the rear dropout when you put pressure on the chain and pedals.  Most are robust and work accurately, giving the rider a better feel of added power when accelerating.

In some situations, I read that one or more of the Hall sensors can go bad and with the right tools, it is a small project for an afternoon that will avoid a replacement ($500-750) or service elsewhere ($100/hr).  Even if you aren’t up to doing the task yourself, you will be better able to diagnose and familiarize issues that occur.  For the avid mechanic, it is possible to upgrade your hub motor for minimal cost.  Larger wires (if they can fit through the frame and center of the wheel) will boost available power and a better controller or throttle can more accurately distribute the power.  Unless you have an extreme desire to mod your electric bike, the magnets and copper wire are difficult and costly to replace.  Some motors are spun low with larger gauge copper wire which can provide more power, but less torque on hilly terrain while high spin copper will have better power at a high cadence and will last longer.

In order to remove the motor from its hub shell, a car bearing puller is necessary.  It is an extractor style tool with three arms that pull on the shell while a center bolt pushes the axle and opposite hub shell side.  It is helpful and recommended that you tap the shell with a mallet during this process to aid in freeing the two halves.  Otherwise, direct extraction with the bearing puller could break the hub flange and then you’ll be left with a useless motor and no shell.

Considering the Stromer that was detailed in the review and diagnosis, I believe that the torque sensor was overloaded in the frame without that necessary bolt and the motor overheated and fried one or more of the sensors.  This would explain the NO_COMM lack of communication between the LCD controller and the motor.

It makes a lot of sense once the elements are broken down like that.  I also think that one of the wires exiting the rear hub is a faulty wire with a weak spot somewhere near the center of the wheel.  The torque sensor itself seems okay.  I am going to check current through each of the wires to determine the faulty one and then solder in a new one along with the replacement of the sensors.

I was very happy to find this information and come to realization that these bikes can be fixed from the ground up if necessary.  Why wait a week or weeks for new parts to install when the local hardware store and Radio Shack have all the necessary parts for a solution?  I am going to continue to do more research into the motor repairs as well as connecting different controllers to the bike for operation.  It is exciting to realize that with the right research, I can create incredibly fun bikes that are useful for both fun and transportation. Now, once I can locate a car bearing puller, I’ll open the motor and take photos of everything so you can see it.  Stay tuned!

– SNC

Stromer Troubleshooting and Diagnosis Part 1

So, I have done a bit of research in my off time to get more acquainted with the Stromer electric-assist bicycle.  It is the other brand of ebike that we carry in our shop and is notable for its price point and performance.  Not only will it go quite a bit faster than the Turbo (about 50kph or 31mph), but it also comes in at a price point of about $3,500 USD versus the $5,999 tag on the Turbo.  Both equate to an amazing experience on a bicycle, but this option seems more affordable than the Turbo without sacrificing quality.  I like to think of the Turbo as an ebike with style where the Stromer is a workhorse that won’t quit and won’t deteriorate under pressure.

That being said, I wanted to go over a few parts of the Stromer that I have worked with and what expect for a long term review in the future once I ride them a little more.  The Stromer is designed by BMC (the company chose to call itself the initials of its UCI code), a Swiss manufacturer that’s founder was the owner of the famous 711 racing team.  They make two models: the ST1 and the ST2.  Both can be configured with various options from a suspension fork or carbon fiber fork to three levels of motor power and two battery levels.

Stromer ST1 Specs

Stromer ST2 Specs

The ST2 is an upgraded version that has a possible range of 150km on one charge.  That is on of the longest lasting battery specs on the market with 814 Wh.  The newest model has a smartphone integration for real time stats and data.  With built in lights, fenders, and a rear rack, it is a notable competitor for the Turbo S and when the newest model hits our shop, I’ll be posting a review on it.  Until then, I will be dealing with troubleshooting the Stromer ST1 and ST2 from prior years since they are more common.  Having all the information I have gathered in one place will help both you and myself as it expands.  From past research, I have not found very useful information on the Stromer on the Internet and have relied mostly in swapping components from a new build to the repair and having replacements sent from the representative for the company in the USA.  That being said, there is still a great deal of information that can speed up repairs and diagnosis and keep your customers happy and riding.

Much of the issues I have come across seem to deal with replacing the display unit or cleaning connections.  One issue dealt with a bad charger (It should be noted that the charging process of the battery off the bike is very specific).  First, plug the adapter cable to the battery.  Then plug the opposite end of the adapter cable to the charger plug.  Next, plug the power cord into the opposite side of the charger from the adapter cable.  Lastly, plug the power cord into the wall.  You should see a red light appear in the LED bubble on the side of the box charger.  After a few seconds (up to about 5 sec), it should change to either an amber color (signifying it is charging) or green (Stromer recommends leaving the charger on while the LED is green for about an hour for maximum charge level).  If the charging connectors are not plugged together in the correct sequence, damage can occur to the charger and the battery and result in a solid red LED on the charger box.  If this is the case, consult your dealer for a replacement charger.  I have had confusion come from customers on the charging process and it has led me to have to deal with recharging a supposedly malfunctioning battery with a new charger.  In these instances, I also try charging it through the bicycle, which helps to eliminate the battery being the issue.  Here are the photos in order of the process.

Cleaning the connectors should be done carefully and with the battery out of the bike.  While an electrical discharge is not likely, be safe and take the battery out first.  This also provides an opportunity to check the connections for the battery inside the frame and on the battery itself.

Here are a few photos of the various electrical connection on the bike.

The two main issues of display replacement have been related to the information messages shown on the display.  One issue of NO_BATT appeared on the display after only a couple of weeks of use.  I checked the battery both in and out of the frame and the connections leading from the display to the battery.  All of them seemed clean of debris or liquid and were securely connected.  The next step was to reset the display to see if the system would correct itself upon start up.  I removed the display from the handlebars by disconnecting the wires and taking the two anchor screws out of the band mount.  Once removed, I used a quarter to turn the battery cover to the open position underneath the circular gray foam pad protecting it.  Taking a scribe, I popped the cover open and removed the CR2032 battery and inspected the two terminals inside the battery compartment.  Both also seemed clean and correctly positioned for contact.  Taking a new CR2032 battery, I installed it carefully and then put the battery cover and foam pad back.  Mounting it back onto the handlebars, I proceeded to carefully connect all of the wires appropriately and turned the system on.  The message of NO_BATT remained and I contacted the rep about a replacement.  In the short-term, I went ahead and connected a brand new display from a model not yet built to this Stromer and everything seemed to work great afterward.  The replacement unit came in and I reinstalled it onto the new build without issue as well.

Another issue I came across (though I believe it to be from either improper assembly or repair in its past and not from a defect) was a mechanical one.  The spacer nut on the rear axle drive side that correctly positions the freewheel away from the frame was completely missing.  I was able to find a suitable spacer and nut at a local hardware store and the wheel spins freely once again.  As the wheel was initially mounted, the high end of the freewheel was locked against the inside of the rear dropout on the frame and scored a fine line into the metal.  If this had continued, the frame would have likely had to been replaced.  You can see it in the photos here.

I am still not finished with the diagnosis of this particular model.  It has seen quite a few miles of use and also has an issue with the display showing an information message of NO_COMM.  This error means that there is a disruption in the communication between one or more of the components.  I scanned through the connectors, but could find little evidence of a bad wire or connector.  The only connection that seemed to have suffered from the weather was the connection to the rear dropout shown above in the right photo and above on the inside of the chainstay.  I question whether attempted use of the bicycle with the freewheel in its original condition as it came to the shop would have overloaded or shorted the sensor in the frame.  This information has been forwarded to the rep for possible solutions and extra wires to swap and test.  Otherwise, I will attempt to receive a replacement display to test (the models in the shop utilize a 2 wire display, where this model uses a display with 4 wires).  My general feeling is that correction of the rear wheel axle assembly and replacement of the display and rear dropout wire will fix all of the issues.  The bike has had a replacement rear wheel already, so the motor should be in good working order.

I will add to this article as the project progresses!  Feel free to message or comment any questions or suggestions.

– SNC

Specialized Turbo S Troubleshooting and Diagnosis Pt.1

Welcome to Part 2 of 3 in my Specialized Turbo S Long Term Review.  I feel like this is some of the most essential information that I can apply in one place that will keep Turbo pedalelecs running beautifully.  However, I do feel that there is a “low-ceiling” limit to the depth that the Turbo can be maintained — even by an experienced and well-equipped shop.  In certain instances, the bike may have to be sent to the factory.  I am of the belief that this is being addressed and the bike will become even more modular and accessible.  That being said, there is a ton that will be covered here and includes several years of work and knowledge.  While I will be mostly highlighting troubled issues, the Turbo overall has been very trouble free and generally without issue.  This just compiles issues from many Turbos I have serviced since their release.

Onward.

 

So, I turned on my Turbo and started pedaling and the motor did not kick in as expected in Full Active and Eco modes.  What’s up with that?

I am starting with this problem because I think it has occurred more than any other issue.  There are a number of symptoms that cause it to happen and a number of solutions.  First, the battery is nearly dead.  Charge it up and try again.  The next thing I would try is to simply turn it off and turn it on again to try it.  This occurrence has spanned several Turbo S bikes on a rare occasion and has been remedied every time in the shop.  The next reason it might not turn on is that the battery may not have been installed properly or the pressure plate at the bottom of the battery “hanger” is not correctly adjusted.

With the battery pressure plate, I have found it to be different on each bike and definitely has a “correct” pressure for the Turbo to function right.  On the bottom of the bike behind the bottom bracket is an access plate that is secured by small 2mm bolts.  Remove these and set aside in a magnetic parts tray so they don’t end up lost on the ground.  Once the anchor plate has been removed, look inside and you’ll see wires, a couple hex bolts, and the shell of the bottom bracket.  Locate the 5mm hex bolt right in the center anchored into a flat plate.  This is an adjustment bolt for moving the battery up and down within the battery dock.  It provides pressure against the battery so vibrations do not disrupt the connection at the opposite end of the down tube.  To be noted, one would likely expect the phrase, “Why not just crank that thing down and really lock it in there?”  Well, here’s why.  If the motor does not seem to be engaging as aforementioned, this same issue can occur if the battery is adjusted to tightly in the dock.  Just as the battery has a little “wiggle” room, so does the connection to the battery inside the frame at the top tube and head tube junction.  If you remove the battery and look at the top of the battery dock, you’ll see where it plugs in.  With your fingers or a scribe, you can definitely see gaskets on the side of the connection and its ability to move slightly up, down, left, or right with a small amount of push.  The general rule is to begin tightening the pressure plate while using your free hand to try and move the battery up and down in the frame.  If you hear any sharp noises when it contacts the top or bottom, continue tightening.  Once there is little movement (0.25-0.5mm), stop tightening and use the key to remove the battery.  If it is too tight, it will be difficult to get the battery out.  I have found that each Turbo is slightly different, which is a great reason to have the plate for adjustment.

Another item to check is the connections between the brake and the control unit and the connection to the wire coming out of the frame.  Also, as a measure of being thorough, there is an additional connection inside the frame at the head tube where the light plugs into a parallel connector with the control unit (Several times, fault signals on the battery will indicate the light and control unit both having an issue when it is mostly one or the other).  By checking these connections, I imply:  Are they tight and correctly aligned for the individual connector pins? Have you applied a tiny amount of dielectric grease to the threads of the connectors? Are the connections and wires constantly rattling or loose?  Try checking each of these regularly when servicing as a quick way of eliminating them in the event of an issue.

So, I turned on my Turbo and everything started up, but a flashing code reading “short circuit” is displaying on the control unit?  Is that bad?

Well, it’s not necessarily good, but can be fixed easily.  Sometimes, constant vibration, continued exposure to the elements, and leaving the rubber charging cap off of the Turbo for extended amounts of time can cause an interruption in the electrical system and send a red flag to the control unit.  It’s a feature designed to override the system much like a circuit breaker so no damage occurs to vital components.  By using the Turbo diagnostic tool plugged into the frame (with battery in) and into a laptop, you can run the diagnostic software and release the hold on the circuit with a convenient button on the screen.  This software is a very important tool in confirming that the motor, battery, control unit, and lights are working properly and displays a wealth of information and reports for keeping Turbos happy and healthy.

My Turbo has gone insane and decided to run at 28mph like a throttle as soon as I hit the pedal.  I don’t even need to pedal. Glad it’s spec’d with great disc brakes.  Does it need an exorcism?

Not quite.  In the early days, Specialized might have taken this approach, but with the “Innovate or Die” theme currently in trend, we now know it’s quite real. This issue has only occurred once, yet is important enough to catalog and solve for any future happenings.  In my prior post, I detailed the symptoms of the bike while it was secured in the bike stand.  I took the opportunity to  remove and clean some of the components on the bike and the frame (After slowly and carefully removing the kickstand, I have realized that unless it is absolutely necessary, don’t ever remove it.  It is tedious because of the frame angles to loosen and tighten the 8mm hex bolt and I found that it didn’t improve access to the electronics and pressure plate under the bottom bracket.  It is a very sturdy dual kickstand that stays tight and balances great.). That being said, I removed the bottom bracket (EVO386) with a socket and outboard cup adaptor and found plenty of access points into the frame to see the wires running to the motor and seatpost LED and the hex bolt adjustment for the pressure plate (5mm) and the lock mechanism with it’s integration into the battery release.  I wiped the battery dock and the battery with isopropyl alcohol.  The terminal connections were also cleaned with isopropyl and a swab.  With some time open in the service schedule, I also decided to remove the external frame charger / battery dock connection unit from the top end of the down tube to make sure all of the connections looked secure and free of debris and moisture.  Thanks to a well-sealed compartment, everything looked great.  I took notes as well on the direction, colors, and pairing of wires that interfaced with the unit.  Red and black paired wires run directly from this to the bottom bracket shell, under the EVO386 BB, and through the non-drive chainstay to the external port near the rear wheel.  A shorter set of these two wires also connects the battery dock connection to the external charge port.  Two sets of blue and brown wires run from the unit to the headtube and into the brake / control interface and also to the bottom bracket shell and into the seat tube to connect into the wires running from the saddle’s integrated LED through the seatpost. One triple set of wires (blue/brown/green) run from the external charge port in the frame to the top of the battery dock where the battery connects to the system.  Lastly, an orange wire runs from the front light to the connection with the control interface (wired in parallel).  As a side note, this is why the diagnostic on the battery will show both the light and control interface having an issue when it could potentially only be one of them.  Good things lights are pretty easy to check.

Once I had satisfied my curiosity of understanding the Turbo S better, I moved on to reinstalling the parts and activating the wheel like before.  I let it run continually for over five minutes with no discernible change.  Continuous operation, only to be paused by giving the brake a solid squeeze.  If the wheel was touched, the throttle would pick up again.  This was also true for pressure on the pedals.  In these situations, I was lucky to have another in the store to help eliminate components.  Taking a brand new rear wheel from the second Turbo (after testing to make sure it was operational), I installed it into the first and powered the system.  No activation of Full Active or Eco modes, but No Power worked as expected and Regen mode seemed more difficult than normal as mentioned with the original wheel.  This is the only area that I am not quite sure what to think of yet.  That’s what the techs at Specialized are for. Continuing with the diagnosis, I also swapped the battery with no effect.  Reinstalling the original wheels and batteries to each Turbo, I then swapped the control interfaces.  This also did not yield any effect.  With the original wheel, the throttle accelerated as before (One thing I might try today is to try both battery, control interface, and new rear wheel from the second Turbo into the first.).  The last thing I did was to put the wheel from the service Turbo into the new Turbo.  It accelerated to 28mph.  Thus, my conclusion (though I will wait for confirmation from Specialized) is that the wheel needs to be recalibrated–specifically the motor.  If this is the case, it will go back to the factory for a quick turnaround and then I’ll have an update on a future post about the issue’s resolution.  This was a great opportunity to fully inspect the bike from top to bottom, inside and out.

I am going to continue this post through the weekend with some other minor issues and fixes that will keep the Turbo S running smooth and fast, but figured that it’d be good to start posting the article for any feedback or questions.

Here are photos of the above parts:

 

 

More to follow!  – SNC

Specialized Turbo S Long Term Review

Welcome to the long awaited review of the Specialized Turbo S.  The “pedalelec” is an electric pedal assist bicycle for those of you not yet hip on such terminology.  From a newly updated control interface (what you use to configure the Turbo) to a more powerful battery, this bicycle can go about 40 miles at 30 miles an hour.  For locals that know the DC area, that would be like coming into the city from here:

40 miles on 66However, it certainly never takes the quoted 41 minutes by car unless it’s 11:28 pm on a Thursday night (according to googlemaps).  The great news is that you’ll never have to spend all that time sitting in traffic if you’re flying down the taxpayer supported trails of the greater Washington DC metro area or wherever you might live.  It’s a bike that leaves everyone smiling the first time they use one and was designed for commuting and recreation by some of Europe’s best bicycle experts with Specialized.  Every single person I have ever seen test ride or own one is smiling ear to ear afterward.

Group ride bikes lined up in three sizes, S, M, L
Group ride bikes lined up in three sizes, S, M, L

This review intends to convey the nature of the bicycle and how it operates as well as issues encountered from a maintenance standpoint over a long period of usage.  I would be the first to admit that, amongst a few expected difficulties, it is a machine worth the investment and is a forefront in the future of this class of bicycles.

Building a Turbo out of the box is not altogether difficult and can be done by most shops with some attention to detail and a thorough reading of the manual.  You might recall from my original article that I attended a seminar on how to operate and work on the Specialized Turbo in Miami back in 2013 and it definitely helped to have time properly set aside to fully understand how it works and how to replace components and fix others in the past few months of research.  With a final recent repair of the regeneration mode activated hydraulic disc brakes by Magura, I felt there was sufficient photos and information to write a good “one-stop” informal manual in case you run into a similar situation.  As started, the build includes normal things like truing the wheels which are installed on the bike with thru-axles and have torque specs located right at each point on the frame and fork.  These specs are important as this bicycle will undergo higher stresses than a majority of other bicycles at higher speed.

So, all of this being said, i think that it’s clear how cool and fun these bikes are to work with and enjoy.  There are certain maintenance issues that seemed to take a fair amount of time to work out, but most of the solutions made great sense after diagnosing and repairing.  I would like to begin by saying this quick procedure, found in the manual, solves many small issues:

1.  Power off the Turbo by lightly clicking the green lit button on the battery.

2.  Turn the key included with the bike down near the bottom bracket and hold.

3.  Lift the battery out from the downtube.

4.  Wait about thirty seconds.

5.  Place the battery (bottom first) and reinstall.

6.  Turn on the Turbo.

Essentially, taking the battery (powered down) out of the Turbo resets the entire system much like unplugging your Internet router at home or work and powering it back on after a few moments.  Every time it starts up, the Turbo passes through a set of diagnostic checks that relay to four small LEDs located right below the power button on the battery.  Each LED should blink once and then remain on until all four have lit up.  Then, all four LEDs should blink together once and then resolves into a battery level meter (each LED represents 25% battery).  If the LEDs have lit up as mentioned, the system has just checked the battery status, the motor status, the control interface status, and the lighting system status.  On the current Turbo S (versus the original model), there is a front light as well as a new integrated rear set of LEDs on the back of the saddle (nice addition).

Turbo Battery

However, at times throughout the research, I would notice one or two LEDs blink twice when the Turbo was turned on and so I checked the manual and diagnostic chart from the Specialized Service website.  Any of the four LEDs blinking twice indicates that there is some sort of fault or error with the corresponding module (battery, motor, CPU, or lights).  The lights and control interface (we’ll call it the CPU) are wired in parallel and it should be mentioned that a fault (LED blinks twice) from either might mean checking both for error.  This has happened on several occasions and could always be resolved, but a check of both modules was usually necessary.  The number one thing I found helpful to do in the case of an error was to immediately check all of the wire connections on the bike to make sure they were properly tight and paired.  In some cases, I found it helpful to use a very small amount of dielectric grease to ensure that the connection was consistent.

From all of the repairs, I have installed or replaced the following: the battery (both the same unit and upgrading the original Turbo with a new unit), bottom bracket (BB386EVO), rear derailleur (SRAM X0), hydraulic brakes (Magura), and the CPU (both updating firmware and software and installing a new unit).  One thing I have never had to replace (on a Turbo) is a spoke.  The wheels were designed and built extremely well and the Specialized Electrak tires are perfect for the bike.  Many other electric bikes I have serviced have experienced spoke breakage and warping of the rim.  As a part of the bike that most people cannot repair on the road without training and tools, it’s a great confidence to know they hold up so well, even with daily commuting, running errands, and several crashes.

I am going to add links below for each section of the review (two additional parts) for ease of navigation.  Once the link is active, the post for the corresponding link will be up.  This way, it’s easier to jump to a section if you are servicing a Turbo and can read the most relevant information.

Parts Installation (Active)

Diagnosis and Troubleshooting (Active)

Specialized Turbo Launch

Well, I am pleased to be back with some spare time to post on the blog and interest you in an event I was at yesterday for the Specialized Turbo electric bike launch and certification.  It was a one day training session and test ride experience in South Beach Miami.  In a quick word of summary — this is the first bike I can correctly term “fast.”  With moderate exertion, we were quickly flying around the city streets with ease and style at 30 mph.

Here are a few photos I took throughout the day.  Below the slideshow is the review of the components so you’ll be more familiar with what they look like and how they function.  It is quite an all-inclusive package with sleek sexy accents and smart technology that flows right in sync with today’s popular commitment to helping the environment and being productive with technology.

This slideshow requires JavaScript.

The day started with a quick summary of how to operate the controls and what to expect.  Then, we rode!  SRAM 1×10 configuration with some incredibly robust Armadillo Elite Electrak tires.  In the “most fun” mode, or full active mode, the bike can attain a speed of 45 kph (30 mph) for an entire hour!  This means, of course, that I could make the 25 mile commute to my work using the pedal assist motor to give the bike double the watts I push into the pedals and make it there in under an hour.  That’s fast.  That’s the Specialized Turbo.

I am really convinced that this design and research has led to a frontier of true “hybrid” bicycles that can realistically be used by anyone and eliminates gas usage and adds great daily exercise.  What about group rides?  Never wanted to join because of the “fast pace” and limitations of keeping up?  This bike allows you to join even an A group ride.  From every other electric bike so far, we’ve seen many drawback, problems, and general “clunkiness.”  This bike specs out at 50 lbs, which is about ten pounds lighter than previous electric-assist bicycles.

The battery is probably the most innovative of all the electric bikes out there.  instead of it being bulky and oddly placed into a rack or after-market mounted to the frame, it integrates directly into the downtube.  This means it becomes part of the bike, with an adjustable cushioning plate to take up small bits of play, which enables easy installation/removal.  The Lithium ion battery is custom designed by Swiss manufacturing and features a unique cell holding grid for the battery so vibrations, bumps, and weather do not impact the performance.  It can operate down to almost 4 degrees Fahrenheit and up to 120 degrees Fahrenheit.  With a built-in diagnostic tool that indicates successfully test and operation of the individual components of the electric motor system.  It also can be used for a rough battery meter indicator — secondary to the much more accurate meter displayed on the integrated computer.  You might be getting the feeling that this bike sports a lot of integration and ergonomic design.  You would be right.

The computer is the central unit for displaying important information about the status of the bike.  it can tell you the normal things a cycling Speedzone computer can from Specialized like temperature, time, speed, and distance.  It also, as aforementioned, displays battery life and modes the bike can run in.  From full active power, which adds the same watts as you input (ex, 200 watts = 400 watts total) to “eco” mode (adds 30 percent of the power you input) to no assist to regenerative mode (recharges the battery), there is a variety of function and usefulness to appropriate your battery life for just about any reasonable commute (anything under about 30 miles).  The eco mode will allow the rider to push their own way with a little support on the parts of riding that need more torque.

A brushless DC motor operates the propulsion of the added power with no moving parts inside and was custom designed from the ground up by the Swiss motor company Go Swiss Motor.  In conjunction with Specialized’s headquarters for the Turbo project in Switzerland, they made a slightly smaller motor than most that exist on electric bikes today and encased it in silicon to make it weatherproof and immersible.  So, a slightly heavy battery, a heavy motor, a rider, and added robust frame design are adding up in weight, which increases the power needed to stop — particularly when you are flying 30 mph down the road.

That leads to the brakes.  Magura MT-8 disc brakes are installed on the Turbo which have incredible stopping power and work great with 160mm rotors front and rear.  A quick side note is that, on the rear wheel disc rotor mount, the rotor bolts used need to be a bit shorter than standard ones.  They use an M5x7mm bolt rather than the normal M5x10mm bolts.  This means either shorter normal ones properly or order sets for spare parts. The most creative aspect of the brake system is the connection to the motor to disengage when the lever is actuation (pulled).  That means braking under just the weight of the bicycle and you rather than that and working against the motor.  Some electric bikes out there have this feature.  However, Specialized took it a step further.  they included the system to be able to regenerate the motor every time you actuate the brake lever.  Even if the pads don’t fully stop the wheel or even make full contact with the rotor, the regeneration mode engages, slowly building and conserving battery life.

In addition to all of this, the bike has integrated lights in front and rear that makes night commuting and riding a breeze.  They work off of the battery to a nominal degree and can be turned on at the light or on the integrated Speedzone ANT+ computer.

This bike really is it for the “car replacement” category of cycling as well as the elite tech savvy crowd interested in the futuristic design and seamless technology interface.  30+ mile rides, 30+ mph speeds, stable flat-protected tires, innovative and pleasing design meant for ease and efficiency, and simply a thrill to ride, the Specialized Turbo was everything I expected it to be and being trained on the servicing and operation by the individuals who actually designed the bike made it a memorable and focused learning experience that will certainly propel my shop to promote its use.  I am sure you’ll be asking one question throughout this whole review.  How much is it?  They retail out at $5,900 dollars.  That’s more expensive than many used cars out there.  It’s tough to justify the expense.  So, I calculated the cost of what a car costs a year paid for and what it cost the average driver in a car with payments.

25 Mile commute -One full tank of gas every two weeks = $52.00 x 26 fill ups a year =  $1352.00
Car insurance payment = $75.00 x 12 months a year = $900.00
Standard maintenance factor = $300.00
Personal Property Tax = $200.00

Grand Total = $2752.00
Now add in 12 months of a $250.00 car payment.  That then equates to $5752 per year.  That’s basically the same as the price of the bike.  And, it will certainly last you more than a year.  From the robust construction, I would guess the bike will ride great with very basic mechanical maintenance for several years before even the battery would need replacing.  Consider the benefits.  I hope you enjoyed a review of the Turbo.  It was really an awesome bike to ride and we will have them in our shops very soon so you can stop by and test ride one yourself.  I guarantee you’ll step back into the shop afterward grinning from ear to ear.  Feel free to email me or comment with questions.  I would be more than happy to answer them or find it out.

– SNC