New Shop Prospects and Tutorials

Hey everyone!  I have been on a nice hiatus while transitioning to a new shop in the area.  I am really excited about the opportunities happening and will be back to regular posts next month.  In the meantime, I have been developing material for tutorials on some of the newest technology in the industry.  It is a passion of mine to figure out solutions for products with little to no information on troubleshooting.  Many times in the shop I will be working with a new bike that has limited instruction from manufacturers and does not necessarily provide methods for effectively carrying out a build (aka the Venge ViAS).  Our shop spent a great deal of time figuring out the best setup for the front rim brake setup and how to eliminate (or at least reduce) the drag the cable would experience when actuated due to the complexity of the cable routing through the steerer tube out to the caliper arm.  Things like this, when solved, will help a great number of people avoid frustration and useless wasted time.  The beauty of it is that hopefully my efforts (both right and wrong) will lead to the most effective solution for the product.  Consequently, I have had many readers comment and provide additional information that further refines the solution.  Collaboration is the best way to make all of our lives easier in the shop.  I always welcome suggestions and other methods as I seek to find whatever is the best.

Compiling all of the information has really helped to use my blog both as a reference for myself and a place for people to detail problems they’ve had.  Even when I cannot provide the exact solution, pointing someone in the right direction (either a dealer or manufacturer) usually resolves it.  Real life problem solving in unknown situations is every bit as important as a torque specification or cable routing diagram.  This doesn’t just apply to high end products.  I find sometime even a cantilever brake can be as frustrating for someone as a wiring issue on an electric bike.

Some of the articles forthcoming will cover:

  • Proper cantilever brake setup (saw that one coming?)
  • Hub motor wheel lacing for electric bikes
  • Disc brake (break) squealing and bleeding difficult disc brake calipers
  • Situations where you need three hands for a project and only have two
  • Setting up tubeless tires on rims that just don’t want to seal during inflation
  • Carbon frame inspection for cracks and damage
  • Proper road shifter placement and why they should be where they are
  • Dropper post setup with internal routing
  • Modding components to accept unacceptable setups (like running an 11-32 cassette with a Di2 rear derailleur)
  • Bottom bracket solutions for BB30, PF30, and BB86/90 (creak creak creak, pop)
  • Updating Di2 firmware yourself (quite easy) and apps for power meter firmware and diagnosing these issues.  This may expand into more than one article.

I hope you’ll read the articles and gain some insight.  Any tips you may have that have been successful are encouraged and welcome.  Also, the articles will detail some of the failures I came across with methods before I was satisfied with the solution.  Thanks for reading! Oh yea, and here is my new cat Ernie.  He didn’t come with a manual unfortunately, haha.  He might be broken 🙂

15941015_10154639992391558_1529008311260796824_n

One gear at a time,

SNC

Advertisements

Stromer Update Photos and Review Part 2

I have an updated gallery of photos for the Stromer ST1 and will be continuing to review it.  After few more issues and discoveries, I will be posting an article later to detail diagnosing the differences between issues with the display, issues with the motor, and issues with the battery.  Some of the information I have gathered will work to fix the problem and some is for correctly diagnosing what needs a replacement or solution.  In my recent article, I talked about the display having problems and have refined the diagnosis a bit further.  As I compile the information and gather the remaining photos today, browse the gallery and compare the components to what is on your Stromer or other pedelec bicycle.  Once again, I would like to mention that the support from both Specialized and Stromer have been top-notch and most of the models that roll through my shop are trouble free and don’t experience any interruption in use.  It can be overwhelming to read an article that mainly details problems, so I will also try to highlight the good points of design and features that I see.  If you own a Stromer, you probably have spent a bit of time on Google to read forums about issues you may be experiencing and found that the information is loosely organized at best and offers very little in the way of a compiled source other than the company’s website.

The article should be finished up by tomorrow morning.  Enjoy the photos!

Turbo Diagnosis Update

Hey everyone! The Turbo S Diagnosis and Troubleshooting article is almost complete. There has been a slight delay because of a new issue that arose within the past few days that is still in progress of being solved and fixed.

One of the 2014 black Turbo S models came in with a particular issue with the motor engaging once pressure to the pedals occurred in Full Active Mode and Eco (30%) mode. You might think, “Isn’t that what the bike is supposed to do?” Well, yes. However, with this particular one, the motor engaged to the Turbo max speed of 28mph without disengaging when the brake was pulled and acted as a throttle (no pedaling required) rather than an electric assist. This could be compared to the gas pedal on your car sticking on the floor and your car traveling at top speed until you shut it off or change gears (on the Turbo, going to No Assist mode or Regeneration mode would disengage the motor). As a side note, one the Turbo was in Regeneration mode, it was much more difficult to pedal than normal while in this mode and the wheel would take a small 1/8 to 1/4 turn backwards when the pedals stopped turning.

As you may have guessed with continual throttle at 28mph, it totally cooked the rear brake pads and most of the front.

So, I will be problem solving it for a day or two more and running several tests while collaborating with Specialized technicians to diagnosis this and of course, finish up the results in Part 2 of the Turbo Review. Thanks for being patient. I hope this gets you curious about the bike and working on it more. I still think the bike is fantastic and doesn’t normally reflect any or all of these problems. In large, it is the most trouble-free electric assist bike I have worked on out of over twenty different brands. These issues are published to conglomerate the most information possible in order to have the largest audience possible understand how to work on the them and maintain them.

– SNC

Specialized Turbo S Long Term Review

Welcome to the long awaited review of the Specialized Turbo S.  The “pedalelec” is an electric pedal assist bicycle for those of you not yet hip on such terminology.  From a newly updated control interface (what you use to configure the Turbo) to a more powerful battery, this bicycle can go about 40 miles at 30 miles an hour.  For locals that know the DC area, that would be like coming into the city from here:

40 miles on 66However, it certainly never takes the quoted 41 minutes by car unless it’s 11:28 pm on a Thursday night (according to googlemaps).  The great news is that you’ll never have to spend all that time sitting in traffic if you’re flying down the taxpayer supported trails of the greater Washington DC metro area or wherever you might live.  It’s a bike that leaves everyone smiling the first time they use one and was designed for commuting and recreation by some of Europe’s best bicycle experts with Specialized.  Every single person I have ever seen test ride or own one is smiling ear to ear afterward.

Group ride bikes lined up in three sizes, S, M, L
Group ride bikes lined up in three sizes, S, M, L

This review intends to convey the nature of the bicycle and how it operates as well as issues encountered from a maintenance standpoint over a long period of usage.  I would be the first to admit that, amongst a few expected difficulties, it is a machine worth the investment and is a forefront in the future of this class of bicycles.

Building a Turbo out of the box is not altogether difficult and can be done by most shops with some attention to detail and a thorough reading of the manual.  You might recall from my original article that I attended a seminar on how to operate and work on the Specialized Turbo in Miami back in 2013 and it definitely helped to have time properly set aside to fully understand how it works and how to replace components and fix others in the past few months of research.  With a final recent repair of the regeneration mode activated hydraulic disc brakes by Magura, I felt there was sufficient photos and information to write a good “one-stop” informal manual in case you run into a similar situation.  As started, the build includes normal things like truing the wheels which are installed on the bike with thru-axles and have torque specs located right at each point on the frame and fork.  These specs are important as this bicycle will undergo higher stresses than a majority of other bicycles at higher speed.

So, all of this being said, i think that it’s clear how cool and fun these bikes are to work with and enjoy.  There are certain maintenance issues that seemed to take a fair amount of time to work out, but most of the solutions made great sense after diagnosing and repairing.  I would like to begin by saying this quick procedure, found in the manual, solves many small issues:

1.  Power off the Turbo by lightly clicking the green lit button on the battery.

2.  Turn the key included with the bike down near the bottom bracket and hold.

3.  Lift the battery out from the downtube.

4.  Wait about thirty seconds.

5.  Place the battery (bottom first) and reinstall.

6.  Turn on the Turbo.

Essentially, taking the battery (powered down) out of the Turbo resets the entire system much like unplugging your Internet router at home or work and powering it back on after a few moments.  Every time it starts up, the Turbo passes through a set of diagnostic checks that relay to four small LEDs located right below the power button on the battery.  Each LED should blink once and then remain on until all four have lit up.  Then, all four LEDs should blink together once and then resolves into a battery level meter (each LED represents 25% battery).  If the LEDs have lit up as mentioned, the system has just checked the battery status, the motor status, the control interface status, and the lighting system status.  On the current Turbo S (versus the original model), there is a front light as well as a new integrated rear set of LEDs on the back of the saddle (nice addition).

Turbo Battery

However, at times throughout the research, I would notice one or two LEDs blink twice when the Turbo was turned on and so I checked the manual and diagnostic chart from the Specialized Service website.  Any of the four LEDs blinking twice indicates that there is some sort of fault or error with the corresponding module (battery, motor, CPU, or lights).  The lights and control interface (we’ll call it the CPU) are wired in parallel and it should be mentioned that a fault (LED blinks twice) from either might mean checking both for error.  This has happened on several occasions and could always be resolved, but a check of both modules was usually necessary.  The number one thing I found helpful to do in the case of an error was to immediately check all of the wire connections on the bike to make sure they were properly tight and paired.  In some cases, I found it helpful to use a very small amount of dielectric grease to ensure that the connection was consistent.

From all of the repairs, I have installed or replaced the following: the battery (both the same unit and upgrading the original Turbo with a new unit), bottom bracket (BB386EVO), rear derailleur (SRAM X0), hydraulic brakes (Magura), and the CPU (both updating firmware and software and installing a new unit).  One thing I have never had to replace (on a Turbo) is a spoke.  The wheels were designed and built extremely well and the Specialized Electrak tires are perfect for the bike.  Many other electric bikes I have serviced have experienced spoke breakage and warping of the rim.  As a part of the bike that most people cannot repair on the road without training and tools, it’s a great confidence to know they hold up so well, even with daily commuting, running errands, and several crashes.

I am going to add links below for each section of the review (two additional parts) for ease of navigation.  Once the link is active, the post for the corresponding link will be up.  This way, it’s easier to jump to a section if you are servicing a Turbo and can read the most relevant information.

Parts Installation (Active)

Diagnosis and Troubleshooting (Active)

SRAM Road Hydro Disc Install & Review (New) & Pinarello Dogma F8 Frameset Unveiled

I thought I would write a review of how to install and adjust / bleed the newest road hydraulic disc components from SRAM (the SB700 series).  They just arrived at the shop a few days ago and I was anxious to see what the differences were and how they would perform once installed.  As normal, there were some easier parts and more difficult ones and I am sure I will encounter new challenges with it for each new frame it’s installed on.

This review is based off of a popular frame — the Specialized SWORKS Crux.  It’s cable routing was designed to use road hydraulic brakes (or mechanical) and was the first one in the shop to be updated.  Here goes.

This is the group right out of the package.  This is the SB700 series and it also came with Zipp Service Course SL tape (black), new rotors/pads, and caliper bleed blocks.

The Shipment New SRAM Hydro  The S Series CaliperThe S700 hydraulic road lever

The front and rear setups were in separate boxes and packaged well.  The only thing that I would have liked to have seen would be a printed copy of the bleed procedure.  However, I did find it easily online here

This bike stayed in the shop from the initial recall and so removal of the recalled hydraulic brakes was fairly quick and easy.  I cut the lines for the rear brake because of the internal routing and pulled the line through after installing this little connector and hose plug to avoid DOT fluid dripping through the frame.

The first thing I did was to clean all of the surfaces the components would be installed to with isopropyl alcohol.  This leaves no residue and provides the cleanest contact surface.  Before this, I also disconnected and removed the old derailleur cables.  Installation of the brake/shift lever is next and was mounted using a small amount of grip paste behind the handlebar mounting bracket to ensure stable placement and zero movement while riding.  Photos below.

Installed rear lever Old lever marking for replacmentInstalled rear lever

 

Once the lever was installed, I checked out the caliper to notice any differences.  These next photos are of the caliper installed and on the bench.  I figure it is more useful to know as many things as possible before the install and some of these things were discovered throughout the installation.

The caliper beside the diagram of parts The removable hose / barb/ olive for trimming 92 Caliper brake pads Bleed block

 

In the above photos, you will notice that the caliper looks about like any other hydraulic caliper out there with a few minor differences.  First, the hose can be cut and sized for the frame at the banjo.  Where older style brakes seemed to always have the crimped metal cap on the hose where it meets the banjo on the caliper, there is a standard 8mm fitting bolt that compresses an olive and barb into the body of the banjo.  Secondly, the pads are uniquely shaped compared to other SRAM/Avid brakes.  Lastly, the safety retainer clip for the bolt that hold the brake pads in the caliper is clipped on the inside of the body, where the edge of the pick is pointing in the second photo.  As a side note, I just realized the potential to use the bleed block as a tool to hold the hose while installing a barb by squeezing the end of the bleed block that is slotted.

Next, the front caliper was installed and appropriate measuring for the hose was fitted for the frame.  I used the smaller cylindrical caliper mounting spacers and found it to look sleek and minimal while providing a stable “post” for the caliper to mount to.

Brand new rotors Installing the front caliper  Installed caliper and rotor on front wheelEasy hose cutting and sizing

 

Cutting and sizing the hose for the front brake was relatively easy and required about the same time as it does for a mountain hydraulic brake.  With no internal routing for the front brake, it simply passes in a nice arc in front of the head tube and follows by a retainer clip on the fork down to the caliper.  Pivot washers and new mounting hardware were all included (a 12mm top spacer and a 7.5mm bottom spacer for a 140mm rotor)(A standard adaptor was also included for a larger rotor).

Now, I’ll cover the installation for the rear brake and then go over the bleed procedure last.  The rear brake hose, as mentioned earlier, is routed through the frame, below the bottom bracket to the non-drive side of the bottom bracket cable guides for the derailleur cables, and out of the rear non-drive chain stay to the caliper.  The caliper mounts directly to the frame mounts along with pivot washers.

One of the important factors in internal routing for hydraulic hoses (and full-length housing) is being able to wrap cushioning around it to prevent rattling in the frame every time the bike hits a bump.  Specialized had provided a spiral foam insulator that was wrapped on the excess of the hose and pushed into the frame where it passed below the bottom bracket (shown below)

The bottom of the photo is where the insulator is pushed into the down tube.  It is incredibly helpful to use some sort of snaking light to illuminate the inside of the frame so the derailleur cables can be checked for crossing when installed (also internally routed).  It’s an easy thing to miss with all of the other focus points of the install and will definitely lead to terrible shifting.  I left the hose for the install as long as possible (cutting it about two inches from the banjo on the brake caliper) so there would be plenty to use for correctly sizing to the frame.  I would note that gloves are definitely useful and necessary while routing the cable so no DOT fluid contacts the skin.

Cable liners routed for derailleur cables Hose plug and tool for routing through the frame Installing new barb and olive onto the cut and sized hose The installed caliper before attaching the hose Rear rotor (and still works for racks on bikes)

The routing through the frame wasn’t as difficult as I thought it would be since the hose was fairly rigid and could be easily seen with the light shown into the frame. Using the little red plug also marginally helped to prevent lots of air from entering the system while installing, which made bleeding the brake quicker and more effective afterward.

The pads lined up to the rotors well for the front and rear.  The pad spacers were held in place well and resisted falling out (great for packing and transporting).  Before bleeding both brakes, I went ahead and installed the derailleur cables back onto the components and adjusted as necessary.

Once the rotors, levers, shifter cables, hydraulic hoses, and calipers were all installed, it was definitely evident and expected that one or two bleeds would be required to get the correct actuation of the lever.  Initial pulls on the lever yielded solid piston movement in the caliper — even with air in the system.

The bleed procedure is quite normal and easy.  The bleed port on the lever is located at the topmost section of the grip, underneath the rubber.  A standard T10 fitting right in the center connected to a 1/4th filled bleed syringe with DOT 5.1 fluid and a hose clamp.  The inner part of the caliper body bolt is the second fitting (also T10) for the 1/2 filled syringe of DOT 5.1 fluid with a hose clamp.  Past this, the bleed procedure is described in depth, step by step at the link mentioned at the start of the article.

Lever bleed port T10 Caliper bleed port T10 Remember this clip! Bleed manual off of website for Road Hydraulic

 

A few things to remember — clean the entire caliper with isopropyl alcohol after bleeding the brake and before reinstalling the brake pads.  Use the included bleed block.  Do not forget the clip for the retainer bolt on the caliper that holds the pads in place.  While not critical for the brake to function, it is a safety clip so the pads do not vibrate out and cause the pistons to contact the rotor in the event of a failure.  Lastly, always go through the bleed procedure step by step.  As noted in the manual, it may be necessary to bleed the brake more than once for the initial install.  I bled the rear brake twice and the front brake once (due to less air exposure than the rear and great results after the first bleed).

I checked the position of the brake pads in relation to the rotor and centered them on either side by loosening and tightening the mounting bolts and placing a white sheet of paper below the caliper (which makes it incredibly easy to see the space between each brake pad and its respective side of the disc rotor).  Once fine-tuned, I test rode it around the area outside our shop and was noticeably impressed.

The shifting performance felt better than the original hydraulic version and slightly better than the mechanical 22 groups.  The brake pads were burnished to the rotors with about 40-50 hard stops and responded quickly to fast braking and slower modulation.  The reach can also be adjusted for quicker pad contact and shorter distance to the handlebars.

All in all, I thought the install took an appropriate amount of time and was well prepared for by SRAM.  The bleed procedure is quite like their mountain brakes, which is easy and was convenient to perform with a brand new bleed kit included with each set of brakes.  The braking power was solid and adequate.  I’ll be awaiting real ride feedback from riders picking them up as I finish installing the others.

Please let me know if you have any questions or comments regarding this article or in your own install as I am always looking to expand the knowledge base to provide accurate instructions and review.  Thanks for the support!

– S.N.C.

As a final note, we also just got a shipment of the new Pinarello Dogma F8 — an incredibly light frame with post hardware rolling in at about 980g!  Below are photos of the frame before the build and I’ll have build photos in the next week as five are already getting ready to head out to the road for takeoff!

 

This slideshow requires JavaScript.

 

 

 

 

Wheel Truing and Specialized Turbo Long Term Review

I will be posting a short article tomorrow evening on wheel truing and will also post Part 1 of all the info and tuning/adjustments I have been through and discovered with the Specialized Turbo S Pedelec bike. I look forward to your thoughts!  Stay tuned for for great info and photos.

P.S.  I also edited the Dura-Ace 9000 front derailleur setup article after reviewing a few comments from readers and my own experiences with the setup.

 

Image

Image

Image

– SNC

What’s in the stand today?

This is what I was working on today….

This slideshow requires JavaScript.

Specs are as follows:

Specialized SWORKS Shiv frameset with integrated aero brakeset, seatpost, and Sitero saddle.  This was a stock build I had etched up a few months back and it had been sitting on our Specialized wall with some grandeur.  It’s spec’d with a Dura-Ace 9000 groupset with time trial shifters.  Zipp Beyond Black stem was swapped for the standard stock stem setup in order to run a Zipp Vuka Bull base bar with TRP carbon brake levers and Fizik matte black tape.  The wheelset currently is a nice set of CXP80 Cosmics, but likely will be switched to Zipp 808s.  It’s a really great aero build that will be the epitome of stealth and craftsmanship.  Since I built it accordingly before, it’s been easy to set in the new cockpit and all that is left is to route the new cables and tune.  Other pressing projects intervened this build today including a Di2 upgrade on a Caad 10 Synapse frameset, a SWORKS lululemon Amira with Ultegra Di2, and an SWORKS hardtail Stumpjumper that needed a final bleed and hose replacement for Formula brakes front and rear.  That was also a great build last week that I should have a finals slideshow for tomorrow evening or Sunday.  Internal hydraulic routing and XX1 group with a nice tubeless setup.  Anyways, I’ve had a long week and got a lot of great projects out to happy riders and need some rest.  I’ll have a short article on some tech stuff that has been important to the industry lately tomorrow.  Thanks for checking things out!

-SNC

Pinarello Dogma Think 2 65HM1K Limited Edition World Champion Frameset

One of the guys I work with arrived early this afternoon to a surprise that his frameset had arrived earlier than expected from Italy.  As one of the most interesting people to work with in the industry I have met, I waited for his reaction to opening the box, eagerly handing scissors to cut the packaging.   It had been three months of waiting.  This is the first one to hit the United States.  It’s a limited edition Pinarello Dogma Think 2 65HM1K World Champion Edition frameset.  As far as I am concerned, there are lighter framesets out there and maybe even more elaborate paint jobs, but combine the two and you have this Dogma.  I installed the headset bearing, races, and spacers and ziptied the steerer tube so we could set it up for some photos.

For those of you reading who have never ridden a Pinarello Dogma (particularly I mention the Dogma due to its reputation above the other frames in Pinarello’s lineup, all of which, of course are also very good framesets), I would like you to envision the coolest tech gadget or hobby or passion you have and think of what the absolute best version of that in the entire world would be.  Got it?  This is one of the best designed bicycle frames in the entire world.  I was really happy to be there at the right time to see it.  The asymmetric carbon frame is made by a company called Torayca.  Their use of Pinarello’s designed 65HM1K carbon fiber with Nanoalloy construction alloys them to create extremely responsive feel and strength in their frames.  For instance, carbon fiber ribbing stretches down the downtube near the bottom bracket on just the drive side to reinforce the unequal power distribution in the frame between right-side thrust (drive) + pull on chain and the left-side thrust (non-drive) + pull on chain.  Classic breaks on many carbon frames of the past have been implemented into the design to be reinforced in these areas as well, creating something truly race worthy or simply as the ultimate thrill of flying down descents and roads with less fatigue, better performance, and comfort all the way through.

It’s a beautiful frame in both form and function.  If you find an opportunity to ride one, do it.  Let’s put it this way, “I really hate my Pinarello.  It really just doesn’t ride well and I’ve had so many problems with it”  … said no one ever in my experience…

This slideshow requires JavaScript.

Park Tool Summit 2013 In Review

I was able to attend six of the eight classes offered at the 2013 Park Tool Summit.  They were the following: Campagnolo, Cane Creek, FSA, Fox, Mavic, and Shimano.  I am going to cover each one and what I thought were the best points to take and apply in the shop. Right below is a slide show of photos I took (sorry for fair quality with cell phone) before the summaries of each class.

This slideshow requires JavaScript.

Campagnolo:

The same instructor, who deals with just about every Campy warranty and issue in the US department, was informative and innovative considering that a pallet of half the working material was still somewhere between the headquarters and the summit.  Inside views of the Romanian factories and the home factory in Vicenza, Italy.  Before recently, Campy was high on security and secrecy to protect larger companies from gaining insight on their special technologies and process.  Now, however, they have adopted a much more transparent view of both the parts diagrams and breakdowns and the environment itself in which the parts are produced.  Because of the demand for such quantities of these quality components, special precise training was exacted for the employees of their two Romanian parts manufacturing facilities dubbed Mechrom 1 and Mechrom 2.  Most of the final assembly of parts is done in these facilities.  They have a great traceability program to ensure that the products and parts are accounted for and distributed correctly.  For instance, every wheel built has a dot matrix code attached that contains information as to the individual that built the wheel and the exact final tension specs, ensuring the rider that the product is as perfect as possible.

Also, various innovations have been discovered and engineered by Campy that have spread to other industries because of the care and accuracy they hold their standards to.  NASA aerospace chassis designs, the formula for casting magnesium (a very very light material), and the first magnesium wheelset are but a few of them.

Great focus on chain design was taught.  Every chain created undergoes over 1200 lbs of force to “pre-stretch” them so they last longer and run smoother than any other chain.  No rider can exert this type of force which entails literally zero broken chain other than if the installer does not install it correctly.  Also, as a side note, installing a “quick link” voids the warranty as they believe only their chain pins meticulously pressed in will be strong enough to support it.  In addition, they recommend installing the chain in the smallest chainring and smallest cog to get the right amount of tension.

Cane Creek:

It was obvious for this seminar that Cane Creek is highly focused on connecting riders together and sharing their experiences for the best ride possible.  They seem to have an attitude of figuring out how to make each rider’s bike settings and technologies work best for that individual by developments in things like changing the angle of the fork and detail tuning their new Double Barrel rear shock.

One surprising note to mention in regards to their very successful headset sizing system (S.H.I.S) is that almost all headsets on the market have been narrowed down to 6 top bearings and 4 bottom bearings, making the system even easier.  As far as changing the angle of the fork mentioned earlier, bowl-shaped cups hold the bearings that are placed in eccentric matching cups in the headset for several different angles that they include as one set, so you can try different combinations for better climbing or better descents, etc.  Also, even with this new system, Cane Creek has a headset fit finder with a database of over 10,000 bikes already and adding new ones each day when submitted by mechanics and other in the industry.  This is awesome as it compiles so much data from so many companies and locates it in one place, leaving the guessing game far behind.

The biggest highlight for me was a detailed summary of their 110 headset.  From cutout diagrams, you could see the multiple seals keeping the bearings sealed up nicely and backing up the 110 year warranty.  Essentially, it is waterproof and to me, rivals the Chris King headset that is also popular by name and by its own sealed system.  I mainly think it is just good to have a choice of two almost indestructible headsets.  Plus, regardless of which one it goes with, they will quickly replace it if you somehow are able to destroy it.

The Double Barrel rear shock is a great product to explore as well and has so many options for fine tuning without problematic issues that usually arise with other rear shocks with leaking, etc.  Seal replacement was very easy and clear to understand and the hands-on experience of doing so really “sealed” in the information.

FSA:

FSA (Full Speed Ahead) was all about ensuring that their products get better and better and flaws and defects get smaller and smaller with genuine rider honesty of feedback and a willingness and commitment of the company to fix any problem.  They were the first company to develop a carbon crank with longevity.  Their SLK series has been continually refined with each season of testing as well as their Gravity line for downhill bikes.  Being that they are located near Whistler and other major downhill areas, the testing grounds put the equipment and research through extreme trials to bring us what we have today.  One cool addition for customer service was a placement of an office on the East Coast to help eliminate the waiting period of time zones to contact representatives.  This creates a faster turn around and closer connection of rider to mechanic to rep.

They also have a headset that was developed much like the one I mentioned earlier with Cane Creek, but their point of interest was to develop one that had fewer parts and a more robust interface that could be depended on in harsh conditions.  Great length was also taken to “creaks” and “clicks” in integrated bottom brackets, so naturally I wanted to turn a keen ear since I wrote an earlier article on bottom brackets and issues that arise.  Several things like the correct materials for installing bearings and retaining them with loctites and compounds that wasn’t as clear before as to how essential it is to choose the correct one.  Moving from so many different types of crank spindles and bottom brackets has led them to the development of their BB386 spindle and bearings that is the same size for all of their cranks.  They make different qualities of these, but all of the are the same so compatibility is a non-issue.

Fox:

Fox seemed to hold a different approach than any other class.  They split theirs into three separate mini-classes with hands-on working at each.  The groups rotated and gained insight on several areas from bushing and seal replacement on forks to lockout tuning and rebound damper adjustment.  The most useful in a business sense that they now offered is the bushing and seal replacement.  Developing a new tool with Barnett’s Institute, it allows bushing replacement on any fork including Fox and passes the ability to do some services at the shop level rather than always sending it to Fox to have work done.  This means that I can get a rider back out on the trail faster and that makes a happier rider.

After the first day of learning, I got to speak with the Fox rep at the social hour following the day.  He showed me a suspension unit that is installed on the new Raptor off-road truck.  I lifted it and it was quite heavy as trucks are far less concerned with being light rather than strong.  It led to something that I wouldn’t have expected.  He said that most people think that the bike fork technology and suspensions are derived from their larger parts on off-road trucks and ATVs, etc.  He said that this was quite the opposite.  The bike technology was hardest to innovate because it not only had to be really strong, but also light enough to ride and that this technology was what actually trickled up to ATV suspensions and then to off-road vehicle suspensions.  Pretty cool.  They also seemed to be having the most fun out of the other companies.

Mavic:

Mavic was, personally, a beautiful sight to see.  Slick blacked-out wheels and carbon spokes all over the place with matching yellow hinting everywhere was the realm of high-end wheels and superior technology.  Not only were several points of misconceptions I had cleared up, but it was also confirmation of several things I had been doing right.

Mavic has a philosophy that their wheels are made as a system from the center of the hub all the way to the ground — including the tire.  This is why all of their wheels are sold with tires installed.  From flashy animations of hub overhaul procedures to French dialogue speaking of dedication to ultimate advancement in technology, they covered essential procedures for replacing carbon spokes in two different wheels (R-SYS and Cosmic Carbone).  Plus, the guys teaching the class were the guys that fix the wheels or rebuild them when we send one back for service.  It was like finally meeting the guys who had done all the great work I see coming back in shipments and on display in the shop and getting a flavor of their standards and tips.

One thing that really stuck out that I didn’t know before was that they use mineral oil inside the freehub body with a bottom seal.  Mineral oil, they said, wasn’t some magical liquid, but just that it was exactly the right “weight” to stay inside and give the freehub years longer of usage and, in its absence, is why some riders have described a high-pitched squeal at times on fast descents.

Shimano:

While much of the material that was covered in the presentation part of the class was what I had recently just finished training on, it was still reinforcing and provided confidence in the hands-on tuning of the new Dura-Ace 9000 drive-train.  With its sleek machined appearance and unbelievably improved smooth performance, I have to contend that all three major companies (Shimano, Campagnolo, and SRAM) have narrowed the gap between each other and the game is at its highest level ever.

The new and improved cables and casing also surprised me to its superior feel and had me thinking they snagged the designer for the Gore Ride-On cables that were just discontinued.  Coming now in seven colors, the PTFE coating is uniquely applied so wear doesn’t affect performance nearly as much as before, allowing riders to use them for longer with better results.  The motto, “friction is the enemy,” really rang true here and great effort was placed into decreasing it and its effect on rider fatigue.

Summary:

All in all, as stated above, the technologies are getting more and more efficient and precise with faster rides and sexier designs.  It’s going to be really exciting to see how far they can go in the next couple years.

– SNC

Dura-Ace 9000 Front Derailleur Setup (with updates)

**** This article will have updates over time due to the popularity of viewing (thanks) and some good tips and setup methods that have been refined over time. Updates will be noted with a * at the beginning of the sentence and at the end.  Important updates will now be placed at the top.

*I am not a fan of the Ultegra/105 level polymer cables.  The individual circlets of polymer coating frayed even with precise installation and over time, clog cable housing (of all types including sheaths in the new Venge VIAS) badly and increase friction horribly.  I highly suggest you install the Dura-Ace polymer cables as they perform exponentially better since the polymer strands are a spiral and do not ever seem to clog the housing under proper installation and maintenance.*

*When installing the front derailleur cable, I wrap the extra length around in my hand (before anchoring it) and pull hard while actuating the shift lever to aid the housing in settling in.  At this same time, I like to use the dull edge of a 3-way hex wrench against the inside curve of the housing.  This creates a nice V oval shaped channel for the cable to run.  With the addition of SP41 grease during installation, that cable is the smoothest shift on the market.  I would even suggest using the cables and housing on other brand’s systems.*

*The loctite (and somehow grease?, which shouldn’t be used) on the support bolts for both Dura-Ace and Ultegra (and 105) front derailleurs is not nearly enough to support the high force pressure of the front derailleur over any decent length of time.  So, take the time and immediately remove this bolt, clean it, and apply blue loctite all over it.  It will help to ensure the front derailleur shifts exceptionally well over time.*

*Chainrings matter!!! Shimano rings work best, followed by in order of our shop experience: FSA, SWORKS, Cannondale SI spiders, ROTOR, SRAM (only Yaw rings, the regular ones do not perform well for racing conditions), Praxis, and then whatever other chainrings are out there including oval rings (I think personally – “You just chose the best shifting system on the market and now want to use it with chainrings that travel up and down under the front derailleur by almost 2cm?  Sure, that’ll work beautifully.?) Just saying that there are probably other options that save you those watts without destroying a great mechanical design.*

Also, please note that the new 6800 Ultegra and 5800 105 level front derailleurs from Shimano are also setup the same way except the Ultegra and 105 models use a slightly different converter tool and instead of a pivotal washer, the pin position that the cable passes before the anchor bolt can be removed and flipped for the recommended setting from the converter tool.*

So, I’ve just recently finished learning and training about the new drive-train group from Shimano, Dura-Ace 9000.  It is a more complex system than last model (7900) and requires some different tools and setup procedures that I’d like to discuss and bring to light.  In particular, the front derailleur is quite different and features extra trim functions (allowing there to be no chain rub) that the Dura-Ace 7900 doesn’t have as well as a great setup tool (TL-FD90) to account for the difference in frame shapes so the derailleur is set up with the same features in all applications.  The new front derailleur (FD-9000) sports a longer “arm” to which the cable attaches, providing a smaller swing of the shift lever, which both decreases rider fatigue and produces quicker and more accurate power.  Lastly, the feature that surprised me at first is the addition of a frame support bolt for the braze-on FD-9000.  It is part of the same design used on the 10-speed Dura-Ace Di2 front derailleur that stiffens the action and equates to a much more “positive” shift.  Onto the setup!

Dura-Ace 9000 Front Derailleur

The first thing you’ll want to examine, of course, is which front derailleur will work best on your frame.  I recommend always going with the braze-on type and using one of three adapter sizes (34.9mm, 31.8mm, and 31.8mm with a 28.6mm shim).  This way, you gain the advantage of having the support bolt as well as the option to use it on a different size frame.  Once you’ve selected the correct adapter, attach the derailleur to the adapter using the conical washer and bolt included and torque to the value of 5-7Nm.

Install the adapter onto the frame and lightly tighten the bolt so that you can slide and move the derailleur into position.  Line the bottom edge outer plate of the derailleur cage within 1-3mm of the large chainring and position the tail of the derailleur cage 0.5-1mm inward from being lined up with the chainring.  This will give you a little room to use the support bolt, which will conveniently and accurately line the cage up parallel to the large chainring.

Using a 2mm allen key, turn the support bolt (located right above the top of the cage) clockwise until it just touches the frame.  *Always remove this support bolt and apply blue loctite.  The support bolts have been found to move over time when settling in and as the derailleur ages. The loctite already on the bolt is not sufficient to keep the bolt in place.*  Then, you’ll remove the derailleur in order to adhere the little metal plate that comes with the component.  It comes with two plates.  One is curved and one is flat.  Use whichever seems to fit better to the frame and make sure the adhesive part is not positioned behind the support bolt.  Using isopropyl alcohol, wipe the area where the support bolt touched the frame earlier so the adhesive patch on the plate has a good clean surface to stick to.  Once this is done, reinstall the derailleur as mentioned in the prior paragraph and turn the support bolt counterclockwise until the outer plate of the cage lines back up with the large chainring.

It’s on the bike! However, that was the easy part.  the next part is critical to setting it up right and making sure all the advantages of the new design are tuned and accurate.  Like I mentioned earlier, the FD-9000 features 4 positions (two normal positions and two trim positions – one for each ring) called “low-trim” position, “low” position, “top-trim” position, and “top” position.  The start of the adjustments begins with the low-trim position.  The anchor bolt for the cable has two different routes that the cable can pass through and the tool mentioned earlier (TL-FD90) will allow you to see which route to choose for the washer (The cable routes the exact same in both cases, but the washer will either be positioned to the left or right).   First, remove the anchor bolt from the derailleur and insert the TL-FD90 into the same hole the anchor bolt was in.  Route the cable into the slot on the tool and observe if the cable is to the left of the indicator line on the tool or the right.  If it is on the left, the anchor plate washer will point towards the left side (off position) and if the cable runs to the right of the indicator line, the plate should be turned to the right (converter or “on” position).  The washer behind the anchor bolt is the only piece that changes position based on the converter tool setup.  This setup allows the shifting performance is be at its best for each frame design.  *I have found, over time, that there is almost no possible way to correctly hold enough tension on the cable when anchoring it to the derailleur.  Hold as much tension on the cable as possible (usually best with small pliers) and be sure an inline barrel adjuster is installed in the cable routing by the handlebars or a frame barrel adjuster is set completely in.*  While all of this probably sounds pretty confusing, the tool shows a small diagram on each side (on or off) in which to position the anchor bolt washer correctly.

Dura-Ace 9000 Front Derailleur “Converter” Tool, TL-FD90

Onto the adjustments!  Once the cable has been torqued to 5-7Nm, we’re ready to get tuning.  Ensure that the derailleur is in the low-trim position and shift the rear derailleur to the low gear (the biggest cog).  Use the downtube barrel adjuster or inline barrel adjuster and turn counterclockwise until the inner plate of the derailleur cage is within 0-0.5mm of the inside edge of the chain. Then, turn the Low limit screw clockwise until it begins to move the chain and then back it off by an eighth of a turn.  Now, we’ll adjust the cable tension by shifting the derailleur into the top-trim position (Shift to the large chainring and then click once on the shifter and notice the derailleur shift back by a small degree).  While in the top-trim position and the chain still in the low (11) cog in the rear, use the barrel adjuster to bring the inner plate of the derailleur cage to 0-0.5mm of the inside edge of the chain.  Once this is done, shift the front derailleur into the low position.  Shift the rear derailleur into the 5th, 6th, and 7th gears to check for rubbing on the inner skid plate of the cage.  If there is no rubbing in these three gears, shift to the 4th and 8th cogs and turn the barrel adjuster counterclockwise or clockwise 1/2 turn, respectively to finish the tension adjustment.  If there still is no rubbing on the 5th, 6th, and 7th cogs, change the converter position of the washer to the opposite position and repeat the setup.  Last thing is the top adjustment.  Shift the rear derailleur into the top gear (1) and turn the top limit screw until the outer plate is within 0-0.5mm of the outside edge of the chain.  Then, shift through all the gears and check your work.

It’s a lot more complex than derailleurs of the past, but I feel like every adjustment will be what makes this the best front derailleur by Shimano yet (of course, except the Dura-Ace Di2 9070).  All of these steps help to ensure against dropping the chain, missed shifts, and less chain rub.

Since that was all a bit dry and technical, renew your flavor for the group by watching this video…

If you are a local cyclist to the area of Northern Virginia, stop by the shop and ask questions.  If you’re abroad, comment or email me for clarification or questions.

– SNC