Mavic Ksyrium ES (Helium Anniversary Edition) Hub Overhaul and Other News

I thought it would be a good article to review a hub overhaul on a nice set of Mavic wheels before your spring riding season heats up (at least on the East coast).  Mavic wheels are quite popular today and the first important thing to remember is that with only minor variation, most Mavic hubs are built similarly and can use the same freehub body on any of their wheels (Occasionally an older freehub will need a sleeve included with new freehub bodies today, but otherwise is the same).  These wheels have a simple yet elegant design that holds up under a variety of riding conditions, is tubeless and 11 speed compatible, and resists corrosion and wear exceptionally well.  The Ksyrium (pronounced “Seerium”) is Mavic’s most prominent wheel and is competitive in both weight and ride quality to most other major wheel manufacturers.

However, despite all of these great points, the hubs still need servicing to remain in top shape and performance and doing so will greatly extend the life of the wheel.  A lack of maintenance can lead to a slower wheel, and when coasting, a high pitched squeal.  This is indication that the inside of the freehub body is dry as well as the rubber seal the freehub sits on.  Dirt and water can still invade the bearings even though they are “sealed” and the dirt can cause wear on an otherwise forever-lasting freehub body.  Most of the wheels that need the freehub body actually replaced are due to a lack of scheduled maintenance rather than it simply wear out due to riding alone.  Let’s dig in!

The front hub is really easy.  it requires the Mavic tire lever and a 5mm hex key.  On the end of the tire lever is a U-shaped curve with two pins on each side.  These pins fit exactly into the holes on the non-drive side of the front hub.  the 5mm hex key is inserted into the opposite side of the hub through the axle.  Loosen the axle with the 5mm hex key (CCW) while holding the tire lever in the preload cap with the pins.  When reassembling, we will discuss its purpose.  Once the preload cap is off of the hub the axle can be pulled out through the side with the hex key.  Inspect the bearings on each side as seen below.

Front Ksyrium hub with axle removedPreload cap for front hubYou’ll likely notice a bit of grease and dirt on the bearing seals. With a bit of isopropyl alcohol, clean the hub area around the bearings and then rotate the bearings to check for gritty spots or rough turning.  You should feel continuously smooth rolling with no drag points if the bearings are in good shape.  If they do need replacement, they can be ordered from your local shop and easily installed with a small bearing puller and bearing press.  This article doesn’t cover the actual replacement of the bearings, but a video is being planned to detail appropriate bearing removal and installation.

Continuing on, if the bearings are in good shape, use isopropyl alcohol to wipe down and clean the preload cap and the axle.  be sure to pop the end of the axle off that are fitted by compression using o-rings.  It is a great idea to apply a small amount of light grease to these so that they will not creak or be difficult to remove for cleaning.  Inspect the o-rings for cuts or abrasions and replace as necessary.

Axle and preload cap and end caps and quick release for front hubThis is the axle and corresponding cap and end cap for each side.  Note that the large circular caps have one with the preload pin holes and one does not.  The one that does not just slides onto the axle until it hits the lip on the right side of the axle in the photo above.  The preload cap with the pin holes threads onto the axle after inserting it through the hub.  be sure to grease the axle before so it installs easily. Using a 5mm hex key and the preload end of the Mavic tire lever, thread the cap on the axle until it starts to tighten up.  Then, back the preload cap off bit by bit will wiggling the axle to detect any play.  As soon as the play is gone, stop.  The hub now will spin as freely as possible without having bearing play.

Now, onto the rear hub!  The rear is a little more complex, but works on the same principles as the front for most of the axle assembly.  The rear hub also has the 5mm hex key opening on the drive side of the axle.  On the non-drive side the end cap can be pulled off with your hand.  It is fitted onto the axle with a compression o-ring, much like the smaller end caps on the front hub.  This is where greasing the o-ring will help greatly.  If the o-ring is dry, it may be difficult to pull off.  In that case I take a cone wrench slightly bigger than the cap and use it to pry the cap off.  Also, an axle vise works great in this case.  Drip a couple drops of Triflow on the cap so that the o-ring is lubricated.  Once removed, look at the inside of the hub.  You’ll see flats for a 12mm hex key.  Insert a 12mm hex key into the non-drive side and a 5mm hex key into the drive side and turn each CCW.  Reference the photo below.

Removing the axle for a Mavic Ksyrium rear hub. The non-drive side end capAbove is the removal of the axle and the non-drive side end cap removed from the axle.  The non-drive side of the axle will stay installed in the hub for the moment and you’ll notice the drive side of the axle threading itself out of the axle.  Once unthreaded, pull the drive side axle out and set to the side.  Then, carefully pull the freehub body off of the hub.  It usually does not take much pressure.  However, two pawls and springs that cause the ratcheting mechanism of the freehub body to work are right under the freehub on the hub shell itself and can spring right off into space if you aren’t careful.  If the springs somehow are lost, don’t even both searching for them unless you don’t have new spare ones.  You will literally never find them until your next shop winter cleaning.  Maybe not even then.  I have searched and searched for these things and generally come up empty-handed.  I mention this in such importance because it is easy to lose these springs.  For that reason, if you are a shop, buy spare parts for these wheels.  They can be used in all Mavic hubs and are cheaper than the time you’ll waste looking for the old ones.  If you are a home mechanic, buy some too, but put the springs upon removal from the hub directly into a magnetic parts bowl.  They will stay put and can even be cleaned easily in the bowl.  This is what the removal of the freehub body looks like.

Pawls and springs and hub shell Inside of the freehub body and drive side axle end.The top photo is of the hub shell under the freehub body and the bottom photo is of the freehub body inside and the drive side axle end.  Notice the dirt, grime, and dirty grease present on the white/tan bushing on the inside of the freehub body.  This bushing is identically machined to each Mavic wheel hub shell when they are made, which creates an amazingly amooth and wear free part.  The killer to the eternal lifespan though is allowing this bushing, the inside of the freehub body, and the pawls and springs to get dry and/or dirty.  Using isopropyl alcohol, clean each part thoroughly and inspect the bearing in the freehub body from wear.  This bearing is a #608 and another is on the outside of the drive side hub shell as seen in the top photo.  The non-drive bearing is a #6903.  Here is a photo of the pawls and springs removed for inspection and cleaning.

Pawls and springsThe left pawl is showing the outside edge.  Once cleaned, inspect this edge.  If there is a shiny wear mark , it is time to replace them.  If the coloring of the pawl is even almost out to the edge, they should be okay.

Freehub body sealOnce you have removed the pawls and springs, use needle nose pliers and gently pull the freehub body seal off of the hub shell.  When this is not properly lubricated, that is what causes the high-pitched squeal when coasting down hills.  It also keeps the mineral oil we will use for the freehub body to stay inside the freehub — allowing better lifespan and performance.  Clean the hub shell as well.

Using the 12mm hex key and the Mavic tire lever, insert the 12mm into the non-drive side of the axle and insert the preload adjustment into the preload cap.  Unthread the preload cap and pull the axle out of the hub shell.

Rear non-drive side hub shell and axleInspect this bearing as well and clean the axle and preload cap with isopropyl alcohol.  Be sure to add grease to the preload cap threads when reinstalling for smooth adjustment.

Rear non-drive side axle and freehub bodyOnce everything is cleaned and inspected, it’s time to reassemble the hub.  Insert the axle with a small amount of grease through the non-drive side of the hub shell and thread the preload cap on just a couple turns.  We will come back later to adjust it.  Tightening it down now will cause the bearings to bind when the drive side of the axle is installed and tightened.

Freehub body with fresh mineral oil from MavicMavic freehub mineral oil (15wt)Drip about five drops of mineral oil (15wt) from Mavic into the freehub body and set on its side so it doesn’t drain out.  Then, apply a bit of mineral oil to the washer between the freehub body and hub shell, seen at the bottom of the above photo and also again slightly set to the side in the photo below.

Freehub body washerIf this washer is not installed, the axle and bearings will bind terribly.  It spaces the freehub away from the hub shell properly so the compression of the freehub seal is not too tight.

Pawls and springs reinstalledNext, install the rubber freehub seal and the pawls and springs.  The springs fit over a pin on each pawls and then into a corresponding hole on the hub shell where they sit.  I usually drip a drop of mineral oil on these two and press them a few times to make sure they spring back open properly and smoothly.  Once these pieces are installed, slide the freehub body onto the hub shell.  When it hits the open pawls, use two fingers to depress the pawls and continue sliding the freehub body on.  Once fully seated, insert the drive side axle with a bit of grease or light loctite and thread into the non-drive side axle until tight (about 8-10Nm).  Turn the freehub body and listen for the correct and constant ratcheting of the pawls.

Installing the rear drive side axleFlip the wheel to the non-drive side and using a 12mm hex key and preload adjustment lever, tighten the cap down as mentioned in the front hub overhaul procedure and back it off until any play in the axle is gone.  That’s pretty much it.  Other than cleaning the rest of the wheel and truing it, the hub overhaul is complete and your wheels will be ready for another season of riding.  I am convinced that if you do this with your wheels before and after winter, you’ll keep your Mavics running for years and years without trouble.  As always, feel free to comment or send questions.

In the next few weeks, I am attempting to film some short repair videos and have had a request for one for the Dura-Ace 9000 front derailleur setup.  This will be the first one with clips on the variations in setup for the Ultegra and 105 level components.

– SNC

Advertisements

How To Properly Glue A Tubular Tire

I am sure that many people have great techniques (as well as poor ones) on how to glue tubulars, but I thought I would provide my take on it.  I have glued well over 500 in my career thus far and not one has ever come back where it “rolled” off the rim.  I take this as a good technique proven over time because if it is one thing I can pretty much guarantee, it’s that someone who rolls one will definitely make sure the ‘gluer’ knows that it happened.  If you perfect the consistency of your method while gluing, then you will have predictable results that are positive.

That being said, let’s dig in.  If you are a bike shop mechanic and haven’t tried gluing, practice on a set of ones first and have them inspected about a week later by someone who has glued.  If the tire is quite difficult to pull off, then you’ve done it right.  Recently, I have come across several cases where a poor gluing was easily reflected in the difficulty (or ease) of pulling the old tire off.  Either the glue had been applied in spots on the rim or almost none at all in the center.  Let me express that you don’t have to have glued a ton of tubulars to get it right.  You just have to follow a method that is proven and makes sense.  If you are a cyclist that doesn’t have access to a shop, then follow this guide because you’ll know your wheels better because of it and you’ll always have the opportunity to be race-ready.  The process can be done in a day with the right tubulars or over several days for ultimate quality and aesthetics.

The first thing I do is to obviously remove the old tubular.  If it has been glued correctly, this will be the second hardest part.  Below you will see a series of photos detailing the removal.  I usually start by taking my index fingers and thumbs and rock the tire side to side in different places on the rim to try to peel the edges of the tire off.  If a particular section starts to peel well, I will focus there.  I take a plastic tire lever and run its edge along the part of the tire that is glued.  This kind of ‘cuts’ the glue to start the removal and ensures that the base tape does not rip off the rest of the tire.  Then, I begin to pry the edge of the lever under the center of the tire until it gives way to the opposite side.  Push either forwards or backwards along the rim flexing the lever upwards to peel more of the tire off.  Once you’ve done this for about a quarter of the radius of the rim, take the lever out and use your hands to peel the rest of the tire off.  Then, put the wheel in a truing stand if you have one for inspection.  Here are the photos of me removing a Vittoria Corsa Evo off of some Campagnolo Bora Ultimates.

After peeling the tire off, inspect it and compare the base tape to the new tubular being glued.  Many times, indentations around each rim hole for the spoke nipple will be seen.  Glue that is hastily applied will seep into these holes in the rim and create havoc for future truing and for broken spoke nipples to exit the rim in a spoke replacement.  Note any areas that are lacking in glue.  More importantly that this is to check the rim bed (the area where the tire contacts the rim) for leftover glue and any inconsistencies.  Check these two photos out:

WP_20141010_019 WP_20141010_014

In the left photo, you can see that glue never really even made it to the right side of the rim and the indent in the center of the rim bed holds roughly the same thickness of glue as the left side.  From a better perspective, the right photo shows the area on the rim I found when peeling the tubular.  My best guess is that a layer of glue was on the tire and then a bead of glue was drawn onto the center of the rim bed before mounting it.  Don’t ever use this method.  That tire is not secure at all for racing — much less around the parking lot for a test ride.  I recommend at this point to mark non-glued tubulars on display models with a symbol on the valve extender with a silver Sharpie marker.

This is how to glue the new tubular.

Since there was little glue on the rim to start with, I elected to ‘paint’ over the existing glue using Vittoria Mastik One tubular glue.  It is rated the best — it holds the best (I have heard recently of using this in conjunction with gluing tape for cross tubulars and the methods I was described sounded great and sound).  The first step is to start spreading glue on the tubular since the base tape will soak up the first layer.  I like to focus on getting about 95% of the base tape covered in a nice layer of glue.  This means no thick spots or globs.  Use an acid brush (hardware stores — very cheap and perfect for the job) to steadily spread the glue in long sections several inches at a time with short strokes.  I usually spread a bead of glue (as pictured below) around a sixth to a quarter of the circumference at a time.  This helps to ensure that the glue doesn’t begin to thicken and dry or drip down onto the rubber of the tire.  While a little glue may touch the rubber, a lot is difficult to fix and results in poor treatment of the rubber to clean.  Take your time and be thorough.  Each coat takes about 10-15 minutes for a beginner and about 5-7 minutes once acquainted.  Check out the progress below.

One important thing to note with layers of glue on the tire is that you want to build a little extra glue right around the valve where it meets the base tape.  This will help prevent damage from pumping it up as well as rough valve holes and a secure fitting when stretching onto the rim.  Like this.

WP_20141010_029

Next is the rim.  I apply glue the exact same way as the tire.  Do two coats on the tire and two coats on the rim.  Spread it evenly and take care to both cover rim edges around the spoke drillings and the areas between.  Spread 2-3 small half-dime size dots of glue between each spoke drilling approximately a quarter way around the rim at a time.  Start at the last place you dripped glue and spread upwards in directional slow strokes.  Angle the brush to drag excesses of glue along the rim to areas where application didn’t sufficiently cover.  The speed of this process is a lot of what experience will give you.  The more you do, the quicker and more efficient you will become.  The idea here is that you follow the steps precisely so that you get glue where it should be.   The aesthetics will come with time.  Tubulars that stay on the rim are always cooler than pretty ones that don’t.  Here is the glue process.

WP_20141010_033 WP_20141010_032

You can see in the right the bead drops of glue and spreading them out in the left photo.  Let each layer dry completely to touch and then it will be time to mount the tire onto the rim.

Take the tire and apply a very very thin layer of glue over the middle 70% of the basetape.  This will aid in activating the glue on the rim and in allowing a bit of positioning.  Check the tread and make absolutely sure that you will be stretching it on the correct direction.  Nothing is more terrible than realizing you just put the tire on backwards. Check the tread one more time.

Insert the valve into the valve hole with only some ‘pliable pressure’ in the tire.  You should be able to stretch it with moderate effort.  Begin with a hand on each side of the valve and pull the tire away from the valve in the direction of the rim.  Check the base tape on each side to make sure it is being placed evenly along the rim.  Once you get to the final six inches of the tire, wedge the axle of the wheel against something and pinch the tire while pulling it onto the rim.  Some cases and combinations of tubulars and rims are exceptionally difficult and some are wonderfully easy.  Vittoria happens to be a tubular that rides incredibly well and stretches easily onto almost any rim.

I hope this helped clear up the process of the gluing.  I may extend the article soon and include some photos of actually stretching the tire.  Feel free to comment and suggest any methods that are well proven.  Thanks for reading!

– SNC

Specialized Turbo Parts Installation

The Turbo S comes mostly assembled in a large sturdy box from Specialized that also has plastic support handles in lieu of simple cardboard ones since it still does weigh about 48 pounds.  The battery is separately packaged in the box in additional cardboard and usually has a decent charge right from the start.  I always un-package it and plug it into the included AC charger so it is at full charge once the bike is ready to ride.

The handlebars and stem need to be installed onto the steerer tube of the fork ) appropriately spaced with the right amount of spacers.  Once this is done, any remaining packaging is recycled and removed.

The seatpost is installed with grease (for alloy) and fiber grip paste (for carbon on the older models).  Right before install the two wires coming from the saddle’s LED need to be connected to the opposing two wires coming from the seat tube.  One of each set will have a blue line on it.  Connect those two and then connect the other two.  Coil the additional wire into the seatpost as you mount it into the frame.  Torque the seatpost binder bolt to a value of 5Nm.  Clamp the bike in the stand with moderate pressure to hold the bike firm while finishing the build and tuning.Turbo Integrated Tailight

The Turbo S uses a MegaEVO386 bottom bracket and compatible crank (30mm spindle).  I remove the crank and use a torque wrench to check the outboard bearing bottom bracket cups to 40Nm.  I then make sure to use a thicker grease on the spindle before installing it into the BB.  This helps ensure that there are no creaking or clicking issues.  Most of the time, I find that the factory build installs it correctly and I have to just double check it.EVO386 Bottom Bracket

I then take both wheels off of the bike.  The front is a thru-axle as is the rear wheel.  Both are necessary to adequately support the wheel in the frame.  After greasing the thru-axle and checking to make sure the cassette lockring is tight, I true and tension both wheels.  Nearly every time I find the wheels are already well-built and simply detension the wheel from shipping and production and lubricate the spoke nipples.Rear wheel motor specThru axle and torque spec

After getting the wheels ready, I like to take care of a few things on the bike that is easier to do without the wheels on.  I wipe the frame down with rubbing alcohol at all points of contact between parts and components. For instance, this would include crank arm pedal threads, both front and rear dropouts, all frame fitting contact points (where cable and wires enter and exit the frame), brake calipers (with pads removed), handlebars, the surface area under the grips, and the rotors on the wheels.  Then the wheels are installed and torqued to the required spec with a torque wrench.

At this point the handlebar is installed, the bottom bracket checked, the wheels checked and trued and cleaned, and the frame is prepped.  After the wheels are installed, it is time to center the brake calipers on the rotors.  At this time, it is also suggested to toque the rotor bolts to spec as well (3.5-5Nm).  Loosen the top and bottom mounting bolts for each caliper and  until they move freely back and forth.  Normally there is blue Loctite on these bolts.  If none is present, apply some.  Then, with the mounting bolts loose, use one hand to press down on the caliper body and with the other hand, squeeze the brake lever.  Slowly snug down the top and bottom mounting bolts until the body does not move easily.  Release the brake lever and place a white piece of paper below the caliper and rotor.  You should be able to easily see the space on each side of the rotor from the pad.  If it is uneven, slightly loosen each of the mounting bolts and center the pads over the rotor.  Once this is done, tighten and torque the bolts to spec and spin the wheel.  Listen for any sound of rubbing and observe that the rotor is true and straight.WP_20140515_008

Shift through the gears in the rear until the chain is positioned in the largest cog (the lowest gear).  Set the LOW limit screw so that the derailleur may very slightly go past the last cog (about a half of a millimeter).  Then, down shift and use the barrel adjuster to correct the cable tension for the smoothest shifting.  Once the chain is positioned in the smallest cog (the highest gear), adjust the HIGH limit screw so the chain is in line with the cog.WP_20140515_018

Now that the ‘bicycle’ parts have been checked and tuned, it is time to install the frame fittings the wires enter and exit.  These are small 2mm hex bolts that should have a small amount of blue Loctite on them.  If they don’t apply some.  Avoid using a ball head hex key to install or remove these as it tends to either strip the bolt head or simply not apply enough bite to turn the bolt.WP_20140515_011

Check the rubber pad in the frame slot for the battery to make sure it is flush against the base of the panel and is covering the wires that run the length of the down tube.  Then, clean the contact points at the top and bottom of the battery slot and on the battery with isopropyl alcohol and place the battery in the frame bottom side first.  When the top half connects into the frame, you should hear a distinct click, indicating the battery is installed correctly.  Attempt to wiggle the battery to ensure it is installed right and test its removal by turning the key located near the bottom bracket on the non-drive side.  Keep this key handy at all times!  It is ridiculously hard to remove the battery without the key.

With the battery installed, the Turbo is ready to rock!  Press the power button on the battery to start up the system.  Now on to the electronic parts and diagnosis!

 

– SNC

 

 

Basic Wheel Truing and Tensioning

Wheels are perhaps one of the most complex parts of cycling in that they are the contact between the rider and the ground or pavement and can be considered the best upgrade a bicycle can have.  Properly trued and tensioned wheels at all levels greatly improve the quality of the ride and the longevity of their peak performance.  Attention to detail, patience, and practice will provide you with worry free operation time and time again.  In the rest of the article, I’ll be referring the true and tension of a wheel as simply wheel truing because both are necessary to keep a wheel straight and rolling correctly.

I believe that anyone can true their own wheels (except for some tubulars and several specific racing wheels) with a bit of guidance and attention to detail.  Taking the time to check your wheels after long rides and on a regular basis will allow you to minimize the amount of truing needed.  A wheel can only be trued so many times before there are no more threads left to tighten on the spokes.  Below is a diagram of a section of rim, a spoke, and a spoke nipple.

Components of Wheel

In this diagram, the spoke is threaded into the spoke nipple, which is anchored by the small lip on the inside of the rim. There are about 10mm of threads on the majority of spokes. Usually, 5-8mm of threads are threaded into the spoke nipple, based on correct spoke length calculation.  This leaves several millimeters of thread to be tightened during the life of the rim and spokes for truing.

Tightening the spoke nipple will guide and pull the rim to the left or right laterally as well as pull it inward towards the hub.  A diagram below illustrates this.

Cross Section of WheelIn this diagram, several of the elements were recreated from the first diagram (the spoke, spoke nipple, and rim).  This is a cross-section of the rim to show how tightening and loosening the spokes will cause the rim to move to the right or left.  Notice that the spoke and spoke nipple does not anchor to the rim at a direction 90 degrees, but at an angle because of the fact that the hub (the center part of the wheel) is wider than the rim.  If you tighten the spoke from the spoke nipple in this diagram, the rim will be pulled to the left.  If you loosen the spoke from the spoke nipple, the rim will move to the right.  This is how, over the course of the rim and all the spokes, that the rim can be straightened and thus, trued.

Now that the concepts are a little clearer, we can then focus on how much to tighten and loosen the spokes.  Once a wheel is built the tension of all the spokes should be relatively even.  Factory built wheels tighten all spokes to a specific tension, causing the rim to usually be slightly out of true once it gets to the shop from a distributor.  The reason that the rim is not true from every spoke being at the exact same tension is because of all the variables in the wheel add up and even high quality parts have small imperfections and variations in machining and manufacturing, summarized by the term, tolerance.  Remember that term because it will come up later.

When truing a wheel, it is wise to make small adjustments each time until the rim is straight (1/8th turns to 1/2 turns).  Never just crank down on one spoke and tighten it until the rim straightens.  This will cause uneven tension of the wheel, which will lead to spokes breaking and the rim to develop a ‘set’ and a shorter lifespan.  Spin the wheel and notice how much the rim moves side to side and settle on the worst sections first.  If you see the rim move to the left or right over a section, take note of how many spokes pass throughout the bend.  Find the worst part of the bend and tighten that spoke about a half turn and then the spokes on either side coming from the same side of the hub.  Tighten those spoke less and less the farther it gets from the spoke you first tightened a half turn, tightening less as the bend recedes.  Lightly squeeze spokes with your hands and spin the wheel in between truing to settle the adjustments.  This ‘shares the load’ between the spokes to straighten that section of the rim and allows the tensions to be gradually increased.  The spokes in a wheel do not work individually as much as being a team.  All must help to share the load of the rider on a bike.

Earlier I mentioned that spokes could also be loosened.  This is only really acceptable in very small amounts and as a second option after tightening spokes.  Loosening decreases tension in the wheel, which can also lead to spokes breaking and less threads engaged in the spoke nipple.  In particularly difficult sections of a rim, tightening and loosening is used to correct a bend, but only with practice and experience over time.  Even with this basic tutorial to help you better understand how a wheel is trued, your first few wheel truings will be a little frustrating.  Know that as you progress and true more wheels, you will begin to understand how much you must tighten a section of spokes to eliminate bends in the rim.  Lastly, sharp bends in a rim are nearly incurable and you will notice that one or two spokes must be tightened by a large amount to even get the wheel ‘mostly’ true.  If this is the case, the rim may need to be replaced and new spokes.  The spoke itself is very very strong and can easily hold 300lbs hanging from its end without much wear.  This being said, the spoke’s main enemy is uneven tension and the fact that there are only so many threads on the spoke’s end to tighten.

In summary, remember these two things.  No spoke works alone and thus, tighten groups of spokes to share the load small increments at a time.  The tolerance of machines and production allow a wheel to be only so true.  Low quality wheels can be trued to moderate expectation and high quality wheels can be trued to high expectation.  This is the difference in tolerances of machining.

Feel free to email or message me regarding any questions you might have.  People have written many books on this subject and I could continually talk to you about wheel theory all day.  Hopefully this article will help you to better understand wheels, how they are adjusted, and your confidence in being your own bicycle mechanic.  Thanks for reading.  Monday night, I’ll be posting Part One of the Specialized Turbo S Long Term Review and what things I have come to learn about working on them, adjusting the electronics, and general knowledge as far as how the technology is progressing.

 

– SNC

 

Wheel Truing and Specialized Turbo Long Term Review

I will be posting a short article tomorrow evening on wheel truing and will also post Part 1 of all the info and tuning/adjustments I have been through and discovered with the Specialized Turbo S Pedelec bike. I look forward to your thoughts!  Stay tuned for for great info and photos.

P.S.  I also edited the Dura-Ace 9000 front derailleur setup article after reviewing a few comments from readers and my own experiences with the setup.

 

Image

Image

Image

– SNC